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Abstract. Camera motions seriously affect the accuracy of action recog-
nition. Traditional methods address this issue through estimating and
compensating camera motions based on optical flow in pixel-domain. But
the high computational complexity of optical flow hinders these methods
from applying to realtime scenarios. In this paper, we advance an efficient
camera motion estimation and compensation method for realtime action
recognition by exploiting motion vectors in video compressed-domain
(a.k.a. compressed-domain global motion estimation, CGME). Taking
advantage of geometric symmetry and differential theory of motion vec-
tors, we estimate the parameters of camera affine transformation. These
parameters are then used to compensate the initial motion vectors to
retain crucial object motions. Finally, we extract video features for action
recognition based on compensated motion vectors. Experimental results
show that our method improves the speed of camera motion estimation
by over 100 times with a minor reduction of about 4 % in recognition
accuracy compared with iDT.

Keywords: Action recognition · Camera motion estimation ·
Compressed-domain

1 Introduction

Automatic human action recognition in video is an important and popular
research area with potential applications in video analysis, video retrieval, video
surveillance and human-computer interaction [6]. Recent research focuses on
realistic datasets collected from surveillance videos, web videos, movies, TV
shows, etc. These datasets impose significant challenges on action recognition due
to camera motions and other fundamental difficulties. Camera motions abound
in real-world video and seriously affect the accuracy of action recognition as they
fire anywhere in the whole image and easily drown out the object motions.

Local space-time features [1–4,7–14] are shown to be successful on these
datasets due to their aggregation of both spatial appearance feature and tempo-
ral motion feature. And some approaches [1–4] further consider to separate cam-
era motions from the temporal motions to preserve defining object motions for
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action recognition. Wu et al. [2] apply a low-rank assumption to decompose fea-
ture trajectories into camera-induced and object-induced components. Recently,
Park et al. [3] perform weak stabilization to remove both camera and object-
centric motions using coarse-scale optical flow for pedestrian detection and pose
estimation in video. Jain et al. [4] decompose visual motions into dominant and
residual motions for extracting trajectories and computing descriptors. Wang
et al. [7] introduce motion boundary histograms in Dense Trajectories (DT)
to suppress camera motions, and further propose a camera motion estimation
(a.k.a. global motion estimation, GME) method in improved Dense Trajectories
(iDT) [1] to explicitly rectify the image to remove the camera motions. Ben-
efited from double camera motion inhibition, iDT performs the best in action
recognition accuracy among local space-time features.

While these methods [1–4] have improved the recognition accuracy through
camera motion estimation and compensation on the basis of optical flow in pixel-
domain, they are extremely time-consuming. For example, the speed of iDT
ranges in the order of 3-4 frames per second (fps), which absolutely dissatisfies
the requirements of realtime application. The main factor of their inefficiency is
the pixel-domain based GME algorithm which must performs inefficient oper-
ation: OF calculation between adjacent frames. More seriously, some methods
[1,3] calculate OF twice: once for GME, once for feature extraction.

To counteract the high computational complexity problem of local space-
time feature, Kantorov et al. [5] make an effective attempt to accelerate the
method of DT through replacing OF with motion vectors (a.k.a. MPEG flow,
MF) which are obtained from video compressed-domain. The replacement of OF
with MF for video feature extraction eliminates the calculation process of OF,
thus the method of [5] improves the speed of feature extraction by two orders
of magnitude at the cost of minor reduction in recognition accuracy compared
with DT. Unfortunately, Kantorov et al. have not considered the interference of
camera motions in MF.

In order to compensate the influence of camera motion and accelerate the
feature extraction process, in this paper we propose a camera motion estimation
and compensation method in the compressed-domain (a.k.a. compressed-domain
global motion estimation, CGME), avoiding the OF calculation in pixel-domain.
Figure 1 presents the comparison of proposed CGME with traditional GME for
action recognition. Based on MF, we estimate camera affine transformation para-
meters by making use of geometric symmetry and differential theory of motion
vector [15]. According to the estimated parameters, we compensate initial MF
to retain crucial object motions for action recognition. We extract video feature
descriptors based on compensated MF by following the method of [5]. Then, we
evaluate the speed and accuracy of our approach on UCF50 [16] and HMDB51
[17] benchmarks. Experimental results show that our method improves the speed
of GME by over 100 times with a minor reduction of about 4% in recognition
accuracy compared with iDT. It is proved that the proposed approach completely
meets the requirements of realtime action recognition.
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Fig. 1. Comparison of proposed approach to traditional approach for action recogni-
tion. Top: Pipeline of proposed CGME and feature extraction in compressed-domain.
Bottom: Pipeline of traditional GME and feature extraction in pixel-domain.

2 Proposed Method

In this section, we first describe the 4-parameter camera affine transformation
model for CGME. And then, we estimate the parameters respectively by using
initial MF in video compressed-domain. Based on the estimated parameters, we
discuss how to rectify the initial MF to eliminate the interference of camera
motions. Finally, we extract the video features based on the revised MF by
following the method of [5].

2.1 Camera Model

We define the 2D coordinate system of the image for CGME in the first place.
The center of the 2D image corresponds to the coordinate origin, the positive
direction of x-axis to the right, the positive direction of y-axis downward, and
the image is divided into four quadrants respectively: I quadrant (bottom-right),
II quadrant (bottom-left), III quadrant (top-left) and IV quadrant (top-right)
(Shown in Fig. 2). Taking any pixel from I quadrant, the spatial coordinates is
defined as zI = (x, y)T (x > 0, y > 0), it surely determines the symmetry points
in other three quadrants: zII = (−x, y)T , zIII = (−x,−y)T , and zIV = (x,−y)T .

Based on the 2D coordinate system, we adopt 4-parameter camera affine
transformation model for modeling the camera motion [15]. This 4-parameter
model can faultlessly model camera translation, scaling, rotation, and their com-
binations. It is defined by

f(z|A, T ) = Az + T =
(
a1 −a2
a2 a1

)(
x
y

)
+

(
tx
ty

)
, (1)

where a1 and a2 are parameters reflecting scaling and rotation changes in motion,
tx and ty control translation parameters, (x, y)T is the point in the image.
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Fig. 2. Example of symmetrical counteraction of scaling/rotation motion vectors.

Thus, a camera motion vector at any point z in image can be expressed as

MV (z) = f(z|A, T ) − z = (A − I)z + T. (2)

2.2 Estimation of T

A camera motion vector can be decomposed into translation, scaling and rotation
sub-vectors. The scaling/rotation sub-vectors in image possess the characteristics
of symmetrical around the origin. So, any two symmetrical scaling/rotation sub-
vectors around the origin can counteract each other (we call it symmetrical
counteraction), that is, the sum of them is zero (Shown in Fig. 2).

We make use of the symmetrical counteraction to estimate the parameter
T which controls translation sub-vectors. Given two symmetrical around the
origin motion vectors MV (zI) (zI = (x, y)T ) in I quadrant sector and MV (zIII)
(zIII = (−x,−y)T ) in III quadrant sector, we sum them and can get translation
parameter T . The sum equation is

MV (zI) + MV (ZIII) = f(zI |A, T ) − zI + f(zIII |A, T ) − zIII

= (A − I)(zI + zIII) + 2T
= 2T.

(3)

Similarly, we can calculate translation parameter T by summing two symmet-
rical around the origin motion vectors MV (zII) (zII = (−x, y)T ) in II quadrant
sector and MV (zIV ) (zIV = (x,−y)T ) in IV quadrant sector,

MV (zII) + MV (ZIV ) = 2T. (4)

By applying Eqs. (3) and (4) on initial MF, we can calculate out a set of initial
T parameters Tinit = {T1, T2, ..., TN}. Ideally, the values in the set Tinit are equal
(T1 = T2 = ... = TN ) under the environments without any object motions except
camera motions. But generally, camera motions and object motions are mixed
together in real videos. So the values in Tinit are not exactly equal, and we are
not sure which truly reflects the real translational motion in Tinit. To estimate
the parameter T from Tinit, we adopt the mean distance threshold determination
algorithm [18]. As can be seen from Algorithm 1, we calculate the mean of all
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Algorithm 1. Estimation of parameter T from Tinit.

Require:
Tinit = {T1, T2, ..., TN};

Ensure:
Testi;

1: Tmean ⇐ (T1 + T2 + · · · + TN ) /N
2: for i = 1 to N do
3: Ri ⇐ |Ti − Tmean|
4: end for
5: Rmean ⇐ (R1 + R2 + · · · + RN ) /N

6: count ⇐ 0
7: for i = 1 to N do
8: if Ri > Rmean then
9: Ti ⇐ 0

10: count ⇐ count + 1
11: end if
12: end for
13: Testi = (T1 + T2 +· · · +TN ) /count

14: return Testi

elements in Tinit firstly, and compute the absolute residuals of all the data based
on the mean value. We put the mean of these residuals as a threshold, and weed
out the outliers from Tinit according to whether the element’s residual is greater
than the threshold. We calculate the mean of rest elements in Tinit, and put it
as the final estimated parameter Testi.

2.3 Estimation of a

We can use the differential principle of motion vectors to calculate the parameter
A. Firstly, we deduce general equations of the differences of motion vectors. Given
two pixels located on the same line z1 = (i1, cy)T and z2 = (i2, cy)T (i2 = i1+sx).
By Eq. (2), we can get

MVx(z2) − MVx(z1)
= (fx(z2|A, T ) − i2) − (fx(z1|A, T ) − i1)
= ((a1 − 1) × i2 − a2 × cy + tx) − ((a1 − 1) × i1 − a2 × cy + tx)
= (a1 − 1)(i2 − i1)
= (a1 − 1) × sx.

(5)

Thus, we can obtain a differential equation on a1 parameters,

a1 =
MVx(z2) − MVx(z1)

sx
+ 1. (6)

Similarly, we can get a differential equation with respect to a2 parameters,

a2 =
MVy(z2) − MVy(z1)

sx
. (7)

Given two pixel coordinates on the same column z3 = (cx, j1)T and z4 =
(cx, j2)T (j2 = j1 + sy), according to the above mentioned, we can get another
set of differential equations on the parameters a1 and a2,

a2 = −MVx(z4) − MVx(z3)
sy

, (8)
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a1 =
MVy(z4) − MVy(z3)

sy
+ 1. (9)

By applying Eqs. (6), (7), (8) and (9) on initial motion vectors, we can
calculate out two sets of initial A parameters a1init = {a11, a12, ..., a1M} and
a2init = {a21, a22, ..., a2K}. We estimate parameter Aesti based on a1init and
a2init by following the algorithm of parameter T estimation in Sect. 2.2.

2.4 Camera Motion Compensation

According to the estimated parameters Testi and Aesti, we compensate the initial
video motion vectors by

MV ′(z) = MV (z) − estiGM(z)
= MV (z) − (Az + T )

= MV (z) −
((

a1 −a2
a2 a1

)(
x
y

)
+

(
tx
ty

))
,

(10)

where MV (z) is the initial MF in compressed-domain, estiGM(z) is the esti-
mated camera motion vectors, and MV ′(z) is the compensated motion vectors
that preserved the defining object motions for action recognition.

2.5 Feature Descriptor Extraction

We follow the design of previously proposed local space-time descriptors [5] and
define our descriptor by histograms of the compensated motion vectors in a
video patch. We compute HOF descriptors as histograms of compensated motion
vectors discretized into eight orientation bins and a non-motion bin. For MBHx
and MBHy descriptors the spatial gradients of the vx and vy components of the
compensated motion vectors are similarly descretized into nine orientation bins.
The final descriptor is obtained by concatenating histograms from each cell of
the 2×2×3 descriptor grid followed by l2-normalization of every temporal slice.
HOG descriptors are computed at the same sparse set of points.

3 Experimental Results

In this section we evaluate the proposed approach on two publicly available
datasets, the UCF50 [16] and HMDB51 [17] (see Fig. 3). The UCF50 dataset has
50 action categories, consisting of real-world videos taken from YouTube. The
actions range from general sports to daily life exercises. For all 50 categories,
the videos are split into 25 groups. For each group, there are at least 4 action
clips. In total, there are 6,618 video clips in UCF50. The HMDB51 dataset is
collected from a variety of sources ranging from digitized movies to YouTube
videos. There are 51 action categories and 6,766 video sequences in HMDB51.

We compare the speed and action recognition accuracy of the proposed app-
roach to recent methods [1,5]. We follow satandard evaluation setups and report
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Fig. 3. Sample frames of standard datasets. Top: UCF50 [16], Bottom: HMDB51 [17].

mean accuracy (Acc) for UCF50 and HMDB51 datasets. The processing speed
is reported in frames-per-second (Fps), run at a single-core Intel Xeon X3430
(2.4 GHz) with no multithreading.

To recognize actions, we follow [1,5] to train a GMM model with K = 256
Gaussians. Each video is, then, represented by a 2DK dimensional Fisher vec-
tor for each descriptor type (HOG, HOF, MBHx and MBHy), where D is the
descriptor dimension. Finally, we apply l2-normalization to the Fisher vector.
To combine different descriptor types, we concatenate their normalized Fisher
vectors. A linear SVM is used for classification.

3.1 GME Evaluation

Table 1 presents action recognition accuracy and speed of the proposed GME
approach compared to the GME method adopted by iDT. The performance of
iDT (90.9% in UCF50 and 55.6% in HMDB51) is approximately four percent
higher compared to our proposed approach.

Table 1. Comparison of action classification accuracy and the speed of proposed
CGME to GME of iDT. The speed is reported for video of spatial resolution 320×240
pixels on UCF50 and 360×240 pixels on HMDB51.

Classification (Acc) Speed (Fps)
CGME(Proposed) GME(iDT) CGME(Proposed) GME(iDT)

UCF50 86.3 % 90.9 % 853.5 6.5
HMDB51 51.9 % 55.6 % 912.3 6.7

When comparing the speed of GME for both methods in UCF50, our CGME
method achieves 853.5 fps which is about 24 times faster than real-time and
131 times faster compared to iDT [1]. And when comapring the speed of GME
for both methods in HMDB51, our CGME method achieves 912.3 fps which is
about 36 times faster than real-time and 136 times faster compared to iDT. From
Table 1 we can see, the runtime of proposed CGME method is < 1% of GME in
iDT by avoiding motion vector calculation, and can fully meets the requirements
of real-time applications.
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3.2 Feature Descriptor Evaluation

We compare our descriptor to iDT [1] and MF [5] on the UCF50 and HMDB51.
iDT performs the best in action recognition accuracy, while MF is the fasted
algorithm among all existing local space-time descriptor methods.

Proposed method vs iDT [1] - Table 2 presents action recognition accuracy
and speed of the proposed approach compared to iDT. The action recognition
accuracy of iDT (90.9% in UCF50 and 55.6% in HMDB51) is approximately 4
percent higher compared to proposed descriptor (86.3% in UCF50 and 51.9% in
HMDB51). When comparing the speed of feature extraction for both methods,
our method (514.1 fps in UCF50 and 582.2 fps in HMDB51) is far faster than
iDT (3.7 fps in UCF50 and 3.9 fps in HMDB51) because proposed approach
works in compressed-domain and keeps away from inefficient OF calculation.

Table 2. Comparison of action classification accuracy and speed of proposed feature
descriptor to iDT [1].

Classification (Acc) Speed (Fps)
Proposed iDT [1] Proposed iDT [1]

UCF50 86.3 % 90.9 % 514.1 3.7
HMDB51 51.9 % 55.6 % 582.2 3.9

Table 3. Comparison of action classification accuracy and speed of proposed feature
descriptor to MF [5].

Classification (Acc) Speed (Fps)
Proposed MF [5] Proposed MF [5]

UCF50 86.3% 82.2 % 514.1 698.4
HMDB51 51.9% 46.7 % 582.2 752.2

Proposed method vs MF [5] - From Table 3 we can see, the action recogni-
tion accuracy of proposed descriptor method (86.3% in UCF50 and 51.9% in
HMDB51) is approximately 5 percent higher compared to MF feature (82.2% in
UCF50 and 46.7% in HMDB51). The reason of accuracy increasement between
MF and proposed descriptor is that the method of proposed GME significantly
inhibite the camera motions (shown in Fig. 4). While the speed of proposed
method (514.1 fps in UCF50 and 582.2 fps in HMDB51) is a little slower than
MF (698.4 fps in UCF50 and 752.2 fps in HMDB51), it also can meet the needs
of realtime processing because it is about 21 times faster than realtime.
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Fig. 4. Comparison of initial motion vectors and compensated motion vectors. Left:
(a)-UCF50 initial vectors (b)-UCF50 compensated vectors, Right: (a)-HMDB51 initial
vectors (b)-HMDB51 compensated vectors. Green Point: motion start point from pre-
vious frame, Green Line: motion from the start point to end point in current frame
(Color figure online).

4 Conclusion

In this work, we present a method called CGME for realtime action recognition,
different from recent mainstream methods. The core idea is: we make full use of
motion vectors in compressed domain for GME and feature extraction to avoid
inefficient OF calculation in pixel domain. Taking advantage of geometric sym-
metry and differential theory of motion vectors, we estimate the parameters of
camera affine transformation and compensate the initial motion vectors based on
the estimated parameters. The proposed method is proved to be more efficient
than iDT and completely suitable for realtime action recognition.
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